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A Double Shooting Scheme for Certain
Unstable and Singular Boundary Value Problems

By Alvin Bayliss*

Abstract. A scheme is presented to obtain the unique bounded solution for an
exponentially unstable linear system. The scheme consists of choosing random
data at large initial values and integrating forwards and backwards until accurate
regular boundary values are obtained. Proofs of convergence are given for the
case that the homogeneous equation has an exponential dichotomy. Applications
to other types of problems are discussed and numerical results are presented.

I. Introduction. We consider here linear inhomogeneous equations
(1.1) y =A@y t+/,

with A(f) an n x n matrix and y and f n-vectors, defined on some open interval /' of
the real axis. We suppose that (1.1) has the property that whenever f € L_(I"), there
exists a unique solution y,, € L_,(I"). Massera and Schaffer [4] have studied such sys-
tems extensively and call such a property (L, L,,) admissibility. When I' = (—co, o),
it is possible to give a complete characterization of such systems and for simplicity we
restrict ourselves to this case, although numerical results will be given for a system de-
fined on (0, o).

For such equations it follows that all nontrivial solutions to the homogeneous
equation

are unbounded as ¢t — o or —o°. If all solutions are unbounded as t — —o0 and in
fact decay as t — +oo (for example if A is a constant matrix whose eigenvalues have
negative real part), then the numerical computation of y., presents no difficulties as
the system (1.1) is stable in the forward direction (see Bayliss [1]). We consider here
the more general case where (1.2) has solutions which grow as ¢ — oo and specifically
where the homogeneous equation has an exponential dichotomy (see Massera and
Schaffer).

An equation of the form (1.2) is said to have an exponential dichotomy if there
exist projections P, P, =1 — P, independent of ¢, such that if Y(¢) is the fundamen-
tal matrix solution to (1.2) (Y(0) = I) we have for some constants K and «
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13 IY(OP, Y o)l <Ke 9, t>5,
IYOP, Y ()l <Ke™E™D, s>t

(The definition of admissibility as originally given by Massera and Schaffer does
not require uniqueness of the bounded solution y_,. Also the definition of exponential
dichotomy given here is more restrictive than that in Massera and Schaffer and corre-
sponds to what they call a double exponential dichotomy induced by a disjoint dihe-
dron (see [4, pp. 285—286]). If the matrix 4 is bounded, admissibility as defined
here is equivalent to our definition of an exponential dichotomy. More refined results
can be found in [4].)

Suppose rank P, = m, rank P, = q = n — m where n is the dimension of the un-
derlying space, and consider the pair of projections (H,(r), H,(r)) where H,(r) =
Y(r)PiY"l(r). Note that the subspaces determined by these projections are carried in-
to themselves by the solution operator Y(£)Y ~!(s) to (1.2) (i.e. if x € Range H(s),
then

y =YY (s)x = Y(O)P,Y "1 (1)Y(£)Y "' (s)x € Range H,(1)).

It is clear from (1.3) that the columns of H,(r) span the subspace of initial data
at t = r such that the solution to (1.2) is bounded as ¢t —> +oo (the stable manifold),
while range(H, (r)) is the space of initial data at ¢ = r such that the solution to (1.2)
is bounded as ¢ — —oo. This is the generalization to nonautonomous systems of the
case that A4 is a constant matrix whose eigenvalues have both positive and negative real
parts.

As already stated, it is known that if 4 is bounded, an exponential dichotomy is
equivalent to (L, L., ) admissibility. The boundedness of solutions to (1.1) can be
regarded as boundary conditions at t = +o, and it seems reasonable to treat the nu-
merical computation of the solution y_, as a singular two point boundary value prob-
lem. An algorithm to solve for the solution y, is presented here. Below we give a
heuristic description of the algorithm. In Section 2 convergence proofs are given for
the case that (1.2) has an exponential dichotomy, and in Section 3 some numerical re-
sults are presented.

We point out that it is not necessary for the homogeneous equation to have an
exponential dichotomy. One can apply the algorithm in any case where all solutions
to the homogeneous equation must grow as ¢ approaches the upper and lower end-
points of the interval. For example A(¢) would have a simple pole at a finite time ¢,
and have some exponentially growing solutions as ¢t — oo. Under appropriate condi-
tions on the behavior of the residue of A4 at ¢, all solutions to the homogeneous equa-
tion will be unbounded as ¢ approaches one of the endpoints. Nevertheless, bounded
solutions would exist for the inhomogeneous equation. Numerical results for such a
system are given in Section 3. One can also hope to apply this procedure to homo-
geneous equations of the kind discussed by Keller [3, pp. 53—58] where one has in-
homogeneous conditions at the lower endpoint and boundedness conditions at oo,

Before describing the algorithm we give some definitions. By an m-dimensional
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hyperplane in R, we mean the set of vectors of the form x = u + EN. Here u is an
n-vector, E is an m x n matrix of rank m while A is an arbitrary m-vector. The pair
(u, E) need not be unique. In fact, we can take the columns of E to be orthonormal
and u orthogonal to E. In this case it is easy to see that the columns of E are unique
up to a rotation and the vector u is the projection of the hyperplane in the orthogonal
complement of the space spanned by the columns of £ and is therefore unique.

Any m + 1 vectors x;, with rank at least m lie in a unique hyperplane. In fact,
if the vectors x; have rank m + 1, we can take e; = (x; — X, +1) and u to be x,, . ;.
If the x; have rank m and we assume x;, . . . , x,,, are linearly independent, we can
take ¢; = x; and u = 0, i.e. the hyperplane is a subspace.

An m-dimensional hyperplane described by x = u + EX and a g-dimensional hy-
perplane z = w + Dy will intersect in exactly one point provided the vectors {e;, d;}
have rank n. The point of intersection can be gotten by solving the linear system

(14) [E,—D]<:>=w—u=£.

The columns of E and D determine a decomposition of R”. Let L, and L2 be the
projections associated with this decomposition. Let |IL,|l, IL,|l < K in, for example,
the Euclidean norm. It is easy to see that for the solution to (1.4) we have

(1.5) Il > == max[IEAI, DI
1

The factor 1/K, is a measure of the angular separation of these subspaces (see Massera
and Schaffer, Chapter 1 for a more extended discussion of this concept) and is inde-
pendent of the particular bases (e;, d]-) used to represent the decomposition. If [|EA]|

= 8|IAll, IDY]l = 8llvll, then from (1.5) it follows that

K
(1.6) max(I, I < =5~ [l

In theory one can always take 8§ = 1 by separately orthogonalizing the columns of E
and of D. But if these vectors in E and D are chosen “nearly dependent” so that & is
small, then (1.6) indicates that the system (1.4) can become ill-conditioned for numer-
ical solution. This will be an important consideration in what follows.

We now describe the algorithm. Let / be a fixed compact interval [, b] on
which one wants to approximate the unique bounded solution y_,. Choose t, >> b,
t;<< a and at s = ¢, prescribe m + 1 arbitrary initial vectors for the integration back-
wards of Eq. (1.1). These known vectors can now be represented in the form

Yolt) T v, 40 e i=1,...,m,

.7
Voolty) ¥ Vppi1s

where we do not know the value of y_(¢,). Similarly, at s = ¢, prescribe q + 1 arbi-

trary initial vectors which we may write as

18) Vult) * Wiy +d;, j=1,...,4,
(7Y I P

where again the value of y(¢;) is not known. The initial vectors in (1.7) are inte-
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grated backwards to ¢ = a while the initial vectors in (1.8) are integrated forwards to
t = b. At any instant ¢ we consider the hyperplanes formed by these solutions.
Defining G, (¢, s) = Y(£)P, Y™ l(s), G,(t, 5) = Y(1)P, Y "1(s) these hyperplanes can be
represented as

@ SO =y(t)+ Gt t,), 41 + Gyt t,)EN
+ Gy (1, 1) 41 T Gy (1 1EN,

(b) Ut) =y.(t) + G, (¢, tpwgiq + Gy(t, t)DY
+ G, twg ey T Gl‘(t’ tpDvy,

(1.9)

for arbitrary A €R,,,, YER,. Nowif Tisa sufficiently large number with T <
min[dist(z,, 1), dist(t,, 1)), then G,(z..£,),. G, (2. t;).= Qe ™ T) and. unless the initial
data are badly chosen (for example G, (¢, t,)E = 0) one would expect these hyperplanes
to be close to the hyperplanes

Sl(t) = yoo(t) + Gl(t’ tr)vm+1 + Gl(t’_ tr)ma

(1.10)
U (1) = y.(t) + G, (¢, tpwg 1 T Gyt t)D7,

which describe the unstable (respectively, in the backwards and forward direction of ¢)
manifolds of the solutions of the differential equation. Thus, the intersection S(¢) N
U(¢) will be close to the unique point of the intersection S, () N U, (¢). It will be
shown in Section 2 that except for initial data chosen from a set of zero measure there
must exist A, and 7y, such that

Gyt t W1 + G (4 1,)ENg =0, Gy(t, tpwy 4y + Gy(t, DYy =0;

and thus, this intersection must be y . (¢).

In practice, one cannot carry out these integrations because the solutions, for
example G, (¢, t,)E, will grow exponentially as £ — —°. One must, therefore, com-
pute the hyperplane S(¢) at times ¢; and take m + 1 new values in S(¢;) of smaller
norm to continue the integration. As long as the new vectors have rank at least m,
one does not change S(¢) and the intersection of the two hyperplanes will be the same.
However, if one should choose new vectors which are nearly dependent, one could ob-
tain a poorly conditioned linear system as described above. The safest way to do this
is to orthonormalize the vectors Y(£)Y "' (¢,)e; and Y)Y ™! (¢)d; (i-e. one gets an or-
thogonal basis for the hyperplanes S(¢) and U(#)) which is the method of Godunov and
Conte, etc. (see Keller [3, p. 7]); other techniques are possible as described in Section 3,
but one must bear in mind that with any of these methods the vectors may become
numerically dependent.

We point out that the crucial part of the algorithm is the hyperplanes S(b) and
U(a). From these hyperplanes one can compute regular two-point boundary conditions
and use any scheme to solve two-point boundary value problems. Finding the hyper-
planes S(¢), U(¢) and the intersection S(r) N U(z) for t € [a, b] corresponds to a double
shooting scheme. Other, more efficient techniques are available (see [3, pp. 2-8]) al-
though the double shooting scheme is the simplest scheme to implement as the same
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code for the backwards integration is used for ¢ € [2, b] and similarly for the forward
integration.

II. Convergence Proof. Here we give a theoretical justification of the algorithm
described in the preceding section. For simplicity the proofs are given for the contin-
uous case. It will be seen that the same proof is valid in the case of discretization by
a strongly stable difference scheme.

Let I = [a, b] and let z, > b, t, <a be chosen so that T = min(dist(z,, 1), dist(z;, 1))
is sufficiently large. Let the initial vectors in (1.7) and (1.8) be chosen at random in
a certain ball. Since y(¢) is bounded, it is sufficient to suppose that the vectors v, ,
€j, Wg 11, d; lie in some ball. We use the notation BR for the ball of radius R in R,,.
Thus, we have

R - -
vn+1,ei,wq+1,d,-€Bn, j=1,...,mi=1,...,q,

for some R. (All norms will be taken as Euclidean unless otherwise stated.)
Now let E be a vector in R, ,, and represent it by the m x n matrix with col-

umns e;. Similarly, let D € R, be represented by the columns d;. We thus have

E€BYR,  DpeByiR
We will prove the following theorem.

THEOREM 1. There exist functions T(€) and u(e) with T(e) — <« (¢ — 0), u(e)
— 0 (¢ — 0) so that for any interval I the difference ||y (t) — S(t) N Ul < e for
t €1, if T = T(e) unless E and D are chosen from a set of measure < u(e).

We note that 7(e) and u(e) are independent of the interval I and of the starting
points ¢, and #;. The only part of the proof.that is not straightforward is the proof
that the measure of the “bad” set can be bounded independently of the starting points
t, and ¢,.

We first prove the following lemma.

LeEmMA 1. Let E €R,,,, be represented by an m x n matrix and let E € Bﬁ},
for some R,. Let P, be a family of m-dimensional projections which are uniformly
bounded inr, ie., |IP,| < C. Forany & let S8, P,) = {E EBﬁ}l: IPEXI = 81Nl for
all N\ €ER,} and let C(8, P,) be its complement. If u denotes the measure in R, ,
generated by the Euclidean metric, then

(2.1) u(C@, P)) —0 (6§ — 0) uniformly inr.

For our purposes the projections P;(r) will be the H,(r) defined in Section 1. If
r is fixed, then C(8, P,) is the set of £ such that for some A\ with [[A]l = 1 we have
IIlP,EN| < &. Thus,as 8 — 0, u(C(3, P,)) — u(C') where C! is the set of m x n
matrices such that for some \ we have P,EX = 0. Since r is fixed, we can always as-

sume
Pr - Im Xm 0
0 0

and, thus, u(Cl) = 0. Thus, the crucial point of Lemma 1 is the uniformity in r.
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PrOOF. We can obviously take R, = 1. It isclear that u(C(s, P,)) — 0 (6 — 0)
for each fixed 7, and it is the uniformity which must be proved. Let S, =7 —P,, and
write E as E; + E, with E; = P,E, E, = S, E. This is a direct sum decomposition,
and we can define a new norm (non-Euclidean) by

IENl, = max(lIP, Ell, IS, E1l).
From the uniform boundedness of the P, we can find a Q independent of r such that
IE, < QIEN,  1IEN < QIIE,.

The new norm || ||, induces a new measure y, on R, and u(S) < 0Ou,(S) for any
Borel set S. It is thus sufficient to show that u, (((8, P,)) converges uniformly to zero
for ||IEll, < Q.

Let p,, ..., P,, be any orthonormal basis spanning the range of P, while s,
-+ 58, will be an orthonormal basis spanning the range of S,. If E is decomposed as
E, + E, with E, = P,E, E, = S E, we can write

E, =PA, E, =SB,

where P is the matrix of columns p,, . .., p,, while S is the matrix of columns s,
-5 8g5 and A4 and B are m x m and q x m matrices, respectively. This clearly de-
fines a mapping of R,,,, — Ry, ® Ry 1y which becomes an isometry (hence measure

preserving), if we give it the norm

(4, B)ll, = max(l4ll, lIBIl).

Now E € C(§, P,) if and only if there exists A € R,,, with [|P,EA|| < S|IAll. This is
equivalent to ||AX|| < 8|I\]l. Now the measure of the set of such points in the ball of
radius Q in R, ,, X R, is o(1) as 8§ — 0 and is independent of P,. This completes
the proof of the lemma.

We: can now complete the proof of the theorem. Recalling the definition of
G,(t, s) and G,(z, s) we have from the definition of an exponential dichotomy the
decay estimates
22) G, @ I <Ke ™29 ¢>5,

G, (2, )l <Ke™*C™D 5>,
We now obtain estimates from below. In fact, if s > ¢ and we set y = G,(t, s)x, we
obtain, with H#, defined as in Section 1, H,(s)x = G (s, #)y; and we can thus write

23) G, (6, 16l > = SO G, 5 >0
and similarly for G,

1 -
(24) IG, (2, syl = 5 N ()xll, 1>,

Now consider the representation for the hyperplanes S() and U(?) given in (1.9).
We first eliminate the troublesome terms G,(t, ¢,)U,,+; and G,(z, t)wg,, so that
the form of S(¢) and U(¢) are approximately y,(f) + EX and y(t) + D7, respectively.
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If E is chosen so that ||[H,(¢,)EN|| = 8|\l where § > 0 is to be specified, we can solve
the equation H,(t,)v,, 1 = H,(t,)E\, for A,. Similarly, choosing D in this way, we

can solve the equation H, (t)wg 41 = H,(¢)Dv, forv,. If we use C as a generic constant
depending only on R and K, we will have

max(")\l", lly, ) < Cls.

Now define A’ = X +A;, v' =7 + v, so that the hyperplanes S(¢) and G(¢) can be
represented as

@ S =y.(t) + Gt t)EN' + G,(t, t)EN' + Gy(t, t,) [V 1 —EN DS

(®)  U® = @) + G, t)DY' + Gy(t, t)DY" + Gy (t, 1) Wy q —D11].
At the point of the intersection A" and v’ must satisfy the following linear equation

@) G, t,)EN = G(t, tz)D'YI + G, tz)[Wq+1 - D],

(®) Gy(t, 1)DY' = G, (2, t)EN' + Go(t, t) vy 1 — ENq].
From (2.2), (2.3) and (2.4) we obtain the following estimates:

T8I < ce Tl + 1/6],  eTII8' Il < Ce™TIN'll + 1/8].

~aT/[2

So far 8 has remained unspecified. We now set 6 = e and obtain

max(I\'1l, Iyl < Ce ™.
From this estimate we obtain at the point of intersection
25) IS() = (Ol < Ce™T12,

Theorem 1 now follows from choosing T so that the right-hand side of (2.5) is <,
setting 6 = e T2 and using Lemma 1 to bound the set of initial values where (2.5)
fails.

The preceding was given for the continuous case; however, one can see that it is
a purely formal proof depending only on the existence of an exponential dichotomy.
This permits one to use results of Bayliss [1] to extend Theorem 1 to strongly stable
difference approximations.

In fact, let (1.1) be approximated by the /-step scheme
1

1
(2.6) 2 Vi =k 3 BiVnyss
j=0 j=0

where k = At and y is given by (1.1).
Associated with (2.6) we have the polynomials

l . l .
px) =3 ax!, ox)= 3 B
j=0 j=0

From consistency we know that x; = 1 is a simplé root of p(x) = 0. Strong stability
is a restriction on the other roots x,, u = 2, ..., l. Specifically, we have (see, for
instance, Gear [2])

e, <1, u=2,...,1L
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Since we want to solve (2.6) backwards as well as forwards, we also require x,, # 0.

We convert (2.6) into a 1-step scheme in the usual way by defining the vector
W, =W~ L. .. ,y,,)T. Using (1.1) to substitute for y, we obtain the linear in-
homogeneous 1-step difference equation

(2'7) Wn+1 = Unwn + k?n.

Here U, (the companion matrix) is an In x In matrix while w, and ?n are In-vectors.
Under these conditions it has been shown (see Bayliss [1]), that for k sufficiently
small:

(i) (2.7) has a unique bounded solution w,, for any bounded forcing term f;,
If ?n comes from discretizing a function f as in (1.1) and w,, , is defined as
Ol +1=1)), ..., y.(nk)T, thenw, — We n — 0 (k —> 0) uniformly in n;and
in fact, [w, = We ,ll. =O(kP) where p is the order of the scheme (2.6) under sufficient
smoothness conditions on 4 and f.

(ii) Let W, be the fundamental matrix solution to the homogeneous version of
(2.7) (W = I). Then there exist projections Pj(k), Py(k) = I — Py(k) of dimension
n(l — 1) + m, q respectively, and constants K, and a, independent of k such that

W,PYW I < K e @k >0

WP W <K e™kG=n)  j>p

This, of course, is exactly the discrete analogue to an exponential dichotomy.
Note that the dimension of the stable manifold is increased by n(l — 1) to take into
account the roots x,, inside the unit circle.

Under these conditions, it is clear that the proof given in Theorem 1 will be
valid for the difference equation (2.7) to approximate the solution w,, , which in turn
is an approximation to the solution y to (1.1).

III. Numerical Results. Here we describe some numerical tests of the scheme
of Section 1. Tests were run on a three-dimensional system

(ERY) y=A4y +f

The matrix 4 was chosen so that the fundamental solution to the homogeneous equa-
tion was
Y(0) = U, (U, (1)e""

with
1 0 0 cosw,;t sinw;t O
U,() =10 sinw,t —cosw,t |, U@ = sinw;t —cosw;t 0 ],
0 cosw,t sinw,t 0 0 1
3.2
-1 -1 0
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The constants w; and w, were chosen as 1 and \/3, respectively. One can verify
that E has eigenvalues —1, =2, +1 so that the homogeneous version of (3.1) has an ex-
ponential dichotomy with a stable manifold of rank 2 and an unstable manifold of
rank 1. The forcing term is chosen so that y_ () = (sin ¢, cos v/2t, O)T is the unique
bounded solution to (3.1). The first order Euler scheme y, . ; = y,, + Aty, and the
second order Crank-Nicholson scheme y, ., =y, + At[y, + ¥, 1]/2 were used for
the integrations. Renormalization was done by writing the vector y as (¥, y,, y3)T
and solving for the hyperplane as y; = Ay, + By, + C. New vectors were then chosen
to minimize the three functionals y% + y§ + y%, y% + .lyg + y% and (y; + 1)? + y%
+ y%. This procedure is not guaranteed to produce at least two independent vectors,
although one might expect it to work except in pathological situations. Indeed, in
practice the method works as we now indicate. Initial data were generated by a ran-
dom number routine normalized to lie in the interval [-5, 5].

Table I gives relative L, errors for y over the interval [0, 1], for different time
steps, for the Euler scheme, while Table II gives the errors for the Crank-Nicholson
scheme. We note the linear and quadratic, respectively, rates of convergence. Experi-
ments with a fixed time step and different sets of initial data produced results agreeing
to three significant figures.

At L, error
.04 .027
02 013
0133 .0087
.01 .0065

TABLE L. Errors for Eq. (3.1) with Euler schemes

At L, error
04 00020
02 000049
0133 000022
01 .000012

TABLE II. Errors for Eq. (3.1) with Crank-Nicholson scheme

Integrations were also done for the homogeneous equation
(3.3) y =A4y.

Here two conditions were specified at # = 0 and we solved for the unique solution
bounded as ¢t — e, This type of system is discussed by Keller [3], as mentioned pre-
viously, but his method is valid only when A is asymptotically constant. Here the
sought for solution was
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-1
U,OU,®eE 0 |,
1

where U,, U, and E are given in (3.2). The values of y; and y, at ¢t = O were pre-
scribed and y, together with data at a large time (¢ = 18) were chosen randomly. L,
errors over the interval [0, 1] are given in Tables III and IV for the Euler and Crank-
Nicholson schemes, respectively. We again note the expected linear and quadratic con-
vergence.

At L, error

04 .043
.02 021
0133 014
01 010

TaBLE . Errors for Eq. (3.3) with Euler scheme

At L, error
04 .00088
02 00022
0133 .000098
.01 .000055

TABLE IV. L, errors for Eq. (3.3) with Crank-Nicholson scheme

Tests were also run on a two-dimensional system of the form

dy 1
(34) 7 =7y tpDy +f()

01 b -1 0
I=\1 o) “\o 1
and p > 0.

Equation (3.4) results from applying the Laplace transform in time to a hyper-
bolic wave type equation of acoustics, the study of which is still in progress. The

with

homogeneous equation has no nontrivial bounded solutions on (0, ) and instead of
boundedness one can require that the solution to (3.4) grow slower than 1/r as r — 0
and less than exponentially as » — oo. The forcing term was chosen so that y_, =
(7, 0) was the sought for solution. Table V indicates normalized L, errors over the
interval [1, 2] for different values of p and different time steps. The Euler scheme
was used for the integrations, and we note the expected rate of convergence. The case



A DOUBLE SHOOTING SCHEME 71

of small p is most important since it corresponds to large time in the inverse Laplace
transform. The asymptotic behavior for small p is not maintained as Ar is decreased
because the integration to get the stable manifold must be started at a large r, and
round-off error then dominates the discretization error.

P Ar L, error
05 .05 015
05 1 0027
05 02 0063
35 .05 0022
35 1 0020
.35 2 0055

1 .05 .00087
1 1 0021

10 0062 .0000496
10 0125 .0000833

20 0062 .0000233
20 0125 .0000421

TABLE V. L, errors for Eq. (3.4)
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